Fiscal Behaviour and Climate Change Commitments in India: Analysing the Budget Credibility

No. 396 02-May-2023 Lekha Chakraborty, Ajay Narayan Jha, Jitesh Yadav, Amandeep Kaur and Balamuraly B

National Institute of Public Finance and Policy New Delhi

Working Paper No. 396

Fiscal Behaviour and Climate Change Commitments in India: Analysing the Budget Credibility

Lekha Chakraborty¹ Ajay Narayan Jha Jitesh Yadav Amandeep Kaur Balamuraly B

Abstract

Against the backdrop of fiscal rules – legally mandated fiscal responsibility and budget management (FRBM) Act - our paper explores the budgetary forecast errors of climate change related public spending in India. The fiscal rules stipulate that fiscal deficit to GDP ratio should be maintained at 3 per cent. However, in the post-covid fiscal strategy, a medium term fiscal consolidation path of 4.5 percent fiscal deficit-GDP is envisioned by 2025-26. Within this fiscal consolidation framework, we analysed the budget credibility of fiscal commitments for climate change in India. We analysed the fiscal behavioural variables in terms of bias, variation and randomness, and captured the systemic variations in budgetary forecast related to climate change for a period 2017-18 to 2020-21 across sectors. We identified the sectors where systematic components of forecasting errors are relatively higher than random components, where minimising errors through altering the fiscal behavioural models are done by revising the assumptions and by applying better forecasting methods. A State level decomposition of the public spending revealed that disaggregated fiscal space available for developmental spending constitute around 60 per cent of total. However, identifying the specifically targeted public spending related to climate change across all States and analysing its fiscal markmanship can further the subnational inferences.

Keywords: Fiscal marksmanship, budget forecast errors, climate change, state finances.

JEL codes: H30, H50, H70, Q58

Accessed at https://www.nipfp.org.in/publications/working-papers/1996/

¹ This paper is invited for presentation at the 79th Congress of the International Institute of Public Finance (IIPF) at Utah State University, August 14-16, 2023. Chakraborty is a Professor at NIPFP and Member of Governing Board of Management of IIPF, Munich; Jha is former Finance Secretary of India, Kaur is an Economist at NIPFP, Yadav and Balamuraly are former researchers (till March 2023) at NIPFP.

Fiscal Behaviour and Climate Change Commitments in India: Analysing the Budget Credibility

Introduction

Against the backdrop of fiscal rules – legally mandated fiscal responsibility and budget management (FRBM) Act - in India, our paper explores the budget forecast errors of climate change related public spending in India. The FRBM stipulates that fiscal deficit to GDP ratio should be maintained at 3 per cent. However, in the post-covid fiscal strategy, a medium term fiscal consolidation path of 4.5 percent fiscal deficit-GDP is envisioned for 2025-26. Within this fiscal consolidation framework, we analyse the budget credibility of fiscal commitments for climate change in India. This is particularly important against the backdrop of COP27 recently held in Egypt. The paper analyses the fiscal behavioural variables in terms of bias, randomness and systematic variations in budgetary forecast (forecast errors) related to climate change related spending for a period 2017-18 to 2020-21.

In India, fiscal arithmetic has three stages – the announcement of Budget Estimate, (BE); after review and revision, government announces the Revised Estimate (RE) the next year and finally publishes the Actuals (actual spending) with a lag of one year or two. We analyse whether there is a sync between BE and RE, and between BE and Actuals or a significant deviation between these three, relate to climate change related spending.

According to the theory of efficient markets, economic agents use all available information to form rational expectations. The rational expectations hypothesis asserts that information is scarce, and the economic system generally does not waste information and that expectations depend specifically on the structure of entire system. Fiscal marksmanship, the accuracy of budgetary forecasting, can be one important piece of such information the rational agents must consider in forming expectations. The significant variations between actual revenue and expenditure from the forecasted budgetary magnitudes could be an indicative of non-optimization or non-attainment of set objectives of fiscal policy. In this context, the role of budget estimates needs to be emphasized as fiscal signals. This point has gained much momentum especially when expectations are based, not on what has happened in the past, but on the data relating to future. That is, if expectations are rational rather than adaptive, it is the estimate of taxes and spending in any given budget - the ex-ante data, not the observed data, available only with a lag – that will be used by forward-looking private agents who base their decisions in whole or in part on fiscal variables.

2. Review of Literature

The political economy of budget deficits and other macro-fiscal variables started gaining attention in the 1990s (Alesina and Perotti 1995; Blanchard 1990). However, one of the earlier discussions of fiscal forecast errors was made by Allan (1965) in the case of Britain. According to Allan, fiscal marksmanship was important during that time was because the margin for error was limited given the tradeoff between inflation and full employment. In such a scenario, accurate predictions of budgetary estimates were important for meeting fiscal policy targets of full employment without undesirably high inflation. Davis (1980), following up on Allan's study, used a longer time series (from 1951 to 1978).

Auld (1970) has done a fiscal marksmanship exercise for Canada for the postwar period (through 1968). Auld says that if the government is to finance its long-range programs, accurate predictions are important. Morrison (1986) has done a fiscal marksmanship exercise in the United States for the years 1950-83. Cassidy, Kamlet, and Nagin (1989) analyzed the revenue forecast biases in the context of Europe. The expectations that macro-fiscal variables may be subject to error has been recognized as an important part of most explanations of the changes in the level of economic activity (Muth 1961). Good fiscal marksmanship can be one important piece of available information rational agents must consider in forming expectations. The significant variations between actual revenue and expenditure from the forecasted budgetary magnitudes could be an indicative of non-optimization or non-attainment of set fiscal policy objectives. In this context, the role of budget estimates needs to be emphasized as what Davis (1980) refers to as *fiscal signals*, noting that budget estimates have an important "signal effect" for outside forecasters and analysts, with particular attention in recent years focused on the estimated borrowing requirement. If expectations are rational rather than adaptive, it is the estimate of taxes and public expenditure in any given budget-the ex-ante data, not the observed data-that will be used by forwardlooking private agents who base their decisions in whole or in part on fiscal variables (Morrison 1986).

In the context of the eurozone, Brück and Stephan (2005) have estimated the political economy determinants of budget deficit forecast errors. Their findings show that politics, electoral cycles, and the institutional design of governments affect the quality of fiscal forecasts. Their findings against the backdrop of the Stability and Growth Pact (SGP) suggest malign incentives for "unobservable fiscal effort" (Beetsma and Jensen 2004) by eurozone governments (compared to other OECD governments) in reporting their budget deficits prior to elections. They explained the fiscal behavior under three cycles—an electoral forecast cycle, a partisan forecast cycle, and an institutional cycle—applying panel econometric techniques to the analysis of forecast that the forecast errors align with election cycles in eurozone countries.

Rullán and Villalonga (2018), in the context of the SGP, have examined the relationship between fiscal rules and budgetary forecasts by analyzing the significance of political and institutional variables in the eurozone. Their findings show that the level of public sector debt is crucial in explaining budgetary forecast errors. The electoral mandate, political orientation of ruling parties, tax autonomy, and per capita revenue are the other significant determinants of forecast errors. This study took the literature

forward to subnational tiers of government in 15 European countries, unlike the earlier studies in the context of eurozone that confined their analysis to a macroeconomic perspective at the national government levels. The SGP therefore creates incentives for creative budgetary deficit forecasts prior to election cycles (Strauch, Hallerberg, and Hagen 2004).

Giuriato, Cepparulo, and Barberi (2016) analyzed the quality of fiscal forecasts of 13 eurozone countries by using annual forecasts for the period 1999–2013 against the backdrop of the stability and convergence programmes. They found that if fiscal rules counter the executive's monopoly on fiscal forecasting, strengthening the legislature's formal powers negatively influences the fiscal forecast accuracy. Pina and Venes (2011) analyzed the budget balance forecasts prepared by 15 European countries in their Excessive Deficit Procedure (EDP) reporting. They found that growth surprises, fiscal institutions, elections cycles, forms of fiscal governance, and numerical expenditure rules (unlike deficit and debt rules) affect the forecast errors.

There have been a number of fiscal marksmanship exercises in the case of India (Bhattacharya and Kumari 1988). In one of the earlier attempts at analyzing budgetary estimates in India (for the period 1956–64), Samuel and Rangarajan (1974) undertook an analysis of two components of the state and union budgets' capital expenditure on construction and industrial development (the analysis was limited to these two because of the scope of the subject matter they were dealing with). In this study, the analysis of forecasting errors was based largely on graphs plotting the actual expenditure and the budget estimates. In their analysis, it is stated that while in both components the central government's budget estimate was more accurate compared to the states, this difference was attributed to the difference in budgetary process's efficiency.

Asher (1978) performed a more comprehensive fiscal marksmanship exercise for India for the period 1967–76 for both the revised and budget estimates. The study showed that during that period, both the revenues and expenditures were consistently underestimated. However, it was observed that the extent of the error on the expenditure side was larger.

Chakrabarty and Varghese (1982) have used data from 1970–80. One of the major findings of that study was that both revenues and expenditure are underestimated. Pattnaik (1990) has done a fiscal marksmanship exercise using Theil's index for the period 1951–89. The study observes that the errors in the revised estimates are lower than the errors in the budget estimates (although there are large errors in both). It stated that the errors in the estimates are largely systematic in nature for both the entire time period as well as for smaller time periods within the whole (the systematic errors were greatest for the period 1981–89).

More recent studies on fiscal marksmanship in India have a different conclusion. A study done by Nitin and Roy (2015) using data from 1990–2012 observes that the source of error in components such as tax revenue, nontax revenue, interest payments, defense revenue expenditure, and fiscal deficit were primarily due to random error (defined in their paper as the proportion of the random error is greater than the bias components or the error in variance). The rest of the components—such as subsidy expenditure, capital expenditure, and non-debt capital receipts—had a higher systematic error (mean error and slope error). A very interesting point made in the paper is that while there is an attempt to have fiscal consolidation by controlling expenditure,

the predictability of expenditure is quite low compared to revenue. In a similar study, Chakraborty and Sinha (2018) undertook a fiscal marksmanship exercise for the period 1990–2017 and have come up with a similar conclusion.

A trend that is observed based on the empirical literature from 1951 to 1990 is that the systematic component of the error was higher, while from 1990 to 2017 the random component is higher. It is worth noting that these above studies are based on the federal government's data. Shrestha and Chakraborty (2019) has examined the fiscal marksmanship in the context of India's states. Their study focused on Kerala and identified forecast errors with respect to tax revenue projections.

In the recent empirical literature, the fiscal forecast errors are analyzed against the backdrop of fiscal rules. The political economy of fiscal forecasts at the subnational level depends on the tax autonomy and the nature of the intergovernmental fiscal transfer mechanism. The tax autonomy is heterogeneous across states. The intergovernmental fiscal transfers may be progressive if the transfer is designed to offset the interstate fiscal disabilities.

In India, the Finance Bill 2018 has incorporated a few clauses (clauses 207–10) to amend the FRBM Act of 2003, with special emphasis on the elimination of references to "revenue balance" and using fiscal deficit as an operational parameter (Chakraborty and Chakraborty 2018). Against these policy changes, it is pertinent to analyze the impact of fiscal rules on fiscal marksmanship of macro-fiscal variables in India. Buiter and Patel (2011) have analyzed fiscal rules in India, however the effect of fiscal rules on fiscal marksmanship in the context of India has not been analyzed. As mentioned above, Nitin and Roy (2014) have analyzed the normative fiscal assessments of India's Finance Commission, and realization of fiscal policy with regard to the central government's finances over the period 1990–2012.

The recent empirical literature on fiscal marksmanship is highly confined to the Indian national government's forecast errors (Chakraborty and Sinha 2018; Nitin and Roy 2014). There has been virtually no effort to undertake a fiscal marksmanship exercise at the state level, except Chakraborty, Chakraborty and Shrestha (2020). In this paper, we attempt to do a fiscal marksmanship exercise for the climate change related spending, analysing the magnitude of the errors and subsequently examining the nature of the errors. This is done in two ways: first we check whether the errors are overestimates or underestimates, and then we check the extent of systematic and random components in these fiscal forecast errors.

3. Methodology of Fiscal Marksmanship

The data is organized from the finance accounts of various states and the Central Statistics Office (CSO). The forecast error is defined as the deviation between what is predicted as budget estimates (BE) or revised estimates (RE) and what is actual.

The Mean Error

The mean error (ME) refers to the average difference between the forecast and the actual. The ME has been calculated by taking the average of the difference between

the predicted values (of both BE and RE) and the actuals. We have divided the ME by the sum of the actuals for the reference period. The ME is a crude measure of the forecast's quality, as positive and negative errors can offset each other, thereby not giving us the exact magnitude of error. However, the ME is an indicator of possible bias in the forecast.

The Root Mean Square Error

The root mean squared error (RMSE) is a measure of the relative size of the forecast error. In this paper, to calculate the RMSE, the mean squared error (MSE) is taken over the reference period after which the square root of the MSE is calculated. While this will give us the magnitude of error, it will not give any information on the direction of the error, i.e., whether the error is positive or negative. We have taken the RMSE as a proportion of the sum of actuals of the reference period. It reflects the fact that large forecast errors are more significant than small differences.

Theil's Inequality Coefficients (U)

Theil's inequality coefficient (U) is used to analyze the measure of accuracy of the budget forecasts. Theil's inequality coefficient is based on the MSE (U₁). The forecast error of Theil (1958) is defined as:

$$\mathbf{U}_{1} = \frac{\sqrt{1/n\sum(P_{t} - A_{t})^{2}}}{\sqrt{1/n\sum P_{t}^{2}} + \sqrt{1/n\sum A_{t}^{2}}}$$
(1)

Where U_1 = inequality coefficient, P_t = predicted value, A_t = actual value, and n = the number of years.

This inequality coefficient ranges from zero to one. When $P_t = A_t$ for all observations (a perfect forecast), U_1 equals zero.²

 U_1 has been decomposed in order to indicate systematic and random sources of error. The systematic component is further divided into the proportion of the total forecast

$$\mathbf{U}_{2} = \frac{\sqrt{1/n\sum(P_{t} - A_{t})^{2}}}{\sqrt{1/n\sum A_{t}^{2}}}$$

A more rigorous measure of Theil's inequality statistics is also used by incorporating the lags in the actuals and the difference of the predicted value from the lag of the actuals to capture the magnitude of error:

$$U_{3} = \sqrt{\frac{1/n\sum[Pt-at]^{2}}{1/n\sum[Pt]^{2} + 1/n\sum[at]^{2}}}$$

where $a = A_{t-}A_{t-1}$, $P_t = P_{t-}A_{t-1}$, and n = number of years

² Theil's second equation for the inequality coefficient uses a revised measure of forecast error. Theil's (1966, 1971) revised measure of inequality is as follows:

This measure has the advantage that the denominator does not contain P and the inequality coefficient does not depend on the forecast. In a perfect forecast, U_2 equals to zero. U_2 does not have an upper bound.

error due to bias and the proportion of total forecast error attributable to unequal variation. The derivation of equation 2 is given in detail in Davis (1980).

$$\mathbf{1} = \frac{\overline{(P - A)^2}}{1/n \sum (P_t - A_t)^2} + \frac{(Sp - Sa)^2}{1/n \sum (P_t - A_t)^2} + \frac{2(1 - r)Sp.Sa}{1/n \sum (P_t - A_t)^2}$$
(2)

In equation (2), P and A are mean predicted and mean actual changes, respectively; Sp and Sa are the standard deviations of predicted and actual values, respectively; and r is the coefficient of correlation between predicted and actual values.

The first expression of right hand side (RHS) in equation (2) is the proportion of the total forecast error due to bias. It represents a measure of the proportion of error due to overprediction or underprediction of the average value. The second expression of the RHS in equation (2) is the proportion of total forecast error attributable to unequal variation. In other words, it measures the proportion of error due to overprediction or underprediction of the values. The third expression of the RHS in equation (2) measures the proportion of forecasting error due to random variation.

The first two sources of error are systematic; presumably they can be reduced by improved forecasting techniques, while the random component is beyond the control of the forecaster.

4. Magnitude of Forecast Errors across Identified Sectors

The data on budget estimates, revised estimates and actuals starting from year 2017-18 till 2020-21 of all climate adaptation related schemes is extracted from Detail Demand for Grants, Union Budgets documents of Government of India. There exists a huge variation in the expenditure incurred by various ministries towards adaptation-related programmes (Chakraborty, et al , forthcoming).

The values of U1, U2 and U3 for various ministries are provided in Table 1. U1 takes on value between 0 and 1. Therefore, it can be determined from Table 1 that the magnitude of errors in ministries such as the Ministry of Consumer Affairs, Food and Public Distribution and the Ministry of Science and Technology is quite significant at around 0.5. However, the Ministry of Science and Technology devotes relatively scant budget on adaptation-related programmes. In contrast, the Ministry of Consumer Affairs, Food, and Public Distribution spends significantly on adaptation-related programmes. U1 for BE was reported to be lowest for Ministry of Road Transport and Highways (0.04) as shown in Table 1.

The value of U_1 for RE was highest for Ministry of Science and Technology (0.66) and negligible for Ministry of Law and Justice, Ministry of Heavy Industries, and Ministry of Steel.

Table 1: Fiscal Marksmanship: Theils' Inequality Statistic (U)						
Name of Ministry/Department		' U (BE, A	Actual)	Theil	s' U (RE, 4	Actual)
	U1	U2	U3	U1	U2	U3
Ministry of Agriculture and Farmers Welfare	0.115	0.259	0.393	0.076	0.161	0.301
Department of Atomic Energy	0.098	0.197	0.732	0.022	0.044	0.123
Ministry of Ayush	0.168	0.384	1.132	0.026	0.053	0.312
Ministry of Chemicals And Fertilizers	0.174	0.315	1.129	0.017	0.035	0.085
Ministry of Coal	0.155	0.354	0.875	0.051	0.107	0.334
Ministry of Commerce and industry	0.080	0.154	0.825	0.042	0.085	0.441
Ministry of Consumer Affairs, Food and Public Distribution	0.496	0.767	0.977	0.128	0.239	0.240
Ministry of Development of North Eastern Region	0.187	0.441	0.705	0.068	0.141	0.227
Ministry of Earth Sciences	0.131	0.290	1.245	0.019	0.039	0.149
Ministry of Education	0.064	0.136	0.841	0.028	0.058	0.509
Ministry of Environment, Forests and Climate Change	0.120	0.262	1.346	0.013	0.026	0.130
Ministry of External Affairs	0.095	0.202	0.534	0.013	0.025	0.110
Ministry of Finance	0.180	0.388	0.978	0.036	0.074	0.159
Ministry of Fisheries, Animal Husbandry and Dairying	0.061	0.126	0.370	0.007	0.013	0.025
Ministry of Food Processing Industries	0.222	0.529	0.489	0.095	0.205	0.253
Ministry of Health and Family Welfare	0.096	0.178	1.102	0.013	0.026	0.110
Ministry of Heavy Industries	0.197	0.447	0.677	0.000	0.000	0.000
Ministry of Home Affairs	0.076	0.152	0.613	0.019	0.037	0.112
Ministry of Housing and Urban Affairs	0.110	0.212	0.595	0.038	0.076	0.047
Ministry of Information and Broadcasting	0.343	1.042	0.559	0.004	0.009	0.007
Ministry of Jal Shakti	0.087	0.182	1.291	0.029	0.058	0.428
Ministry of Law And Justice	0.111	0.215	0.559	0.000	0.001	0.002
Ministry of Micro, Small and Medium Enterprises	0.078	0.159	0.578	0.005	0.010	0.023
Ministry of Mines	0.222	0.471	0.533	0.214	0.443	0.507
Ministry of Minority Affairs	0.083	0.178	0.796	0.066	0.137	0.606
Ministry of New And Renewable Energy	0.223	0.544	0.948	0.054	0.114	0.287
Ministry of Panchayati Raj	0.174	0.411	0.975	0.013	0.026	0.088
Ministry of Petroleum and Natural Gas	0.127	0.275	0.571	0.021	0.043	0.090
Ministry of Power	0.123	0.256	1.022	0.081	0.158	0.493
Ministry of Railways	0.450	0.648	0.966	0.236	0.609	0.422
Ministry of Road Transport And Highways	0.038	0.074	0.352	0.016	0.033	0.131
Ministry of Rural Development	0.148	0.270	1.010	0.002	0.004	0.011
Ministry of Science and Technology	0.496	1.694	0.871	0.663	3.235	0.871
Ministry of Skill Development And Entrepreneurship	0.120	0.270	0.673	0.032	0.066	0.255
Ministry of Social Justice And Empowerment	0.065	0.128	0.527	0.008	0.016	0.051
Department of Space	0.100	0.207	0.884	0.004	0.008	0.026
Ministry of Steel	0.303	0.623	0.575	0.000	0.000	0.000
Ministry of Textiles	0.075	0.152	0.672	0.025	0.050	0.096
Ministry of Tourism	0.196	0.408	0.447	0.000	0.000	0.000
Ministry of Tribal Affairs	0.073	0.148	0.942	0.004	0.008	0.009
Ministry of Women And Child Development	0.131	0.293	1.111	0.092	0.092	0.519
Source: (Basic data) Finance Accounts (various years)	<u> </u>		•	l		

Table 1. Fiscal	Marksmanship:	Theils'	Inequality	Statistic (II)
\mathbf{I}	marksmansmu.	THOMS	moduant	Statistic (U)

Source: (Basic data), Finance Accounts (various years), Government of India

Accessed at https://www.nipfp.org.in/publications/working-papers/1996/

5. Partitioning The Budget Forecast Errors

Table 2 gives the results obtained after partitioning the forecast errors in budget estimates into systematic and random component. Systematic error can be improved upon but random component is beyond the forecaster's control. In case of budget estimates, Ministry of Science and Technology, and Ministry of Information and Broadcasting reported highest systematic errors, whereas Ministry of Social Justice and Empowerment reported the lowest systematic error at around 0.07 (Table 2).

Table 2: Partitioning the Sources of Forecast Errors:	1		
Name of Ministry	BIAS	UNEQUAL	RANDOM
Ministry of Agriculture and Farmers Welfare	0.63	0.33	0.04
Department of Atomic Energy	0.01	0.40	0.59
Ministry of Ayush	0.46	0.16	0.38
Ministry of Chemicals and Fertilizers	0.23	0.51	0.25
Ministry of Coal	0.61	0.09	0.30
Ministry of Commerce and industry	0.30	0.39	0.31
Ministry of Consumer Affairs, Food and Public Distribution	0.08	0.57	0.36
Ministry of Development of North Eastern Region	0.73	0.03	0.23
Ministry of Earth Sciences	0.54	0.03	0.43
Ministry of Education	0.70	0.25	0.05
Ministry of Environment, Forests and Climate Change	0.54	0.02	0.45
Ministry of External Affairs	0.50	0.01	0.49
Ministry of Finance	0.05	0.30	0.65
Ministry of Fisheries, Animal Husbandry and Dairying	0.36	0.01	0.63
Ministry of Food Processing Industries	0.44	0.09	0.47
Ministry of Health and Family Welfare	0.60	0.19	0.22
Ministry of Heavy Industries	0.44	0.02	0.54
Ministry of Home Affairs	0.00	0.22	0.78
Ministry of Housing And Urban Affairs	0.07	0.27	0.66
Ministry of Information And Broadcasting	0.49	0.50	0.00
Ministry of Jal Shakti	0.35	0.01	0.64
Ministry of Law And Justice	0.04	0.40	0.55
Ministry of Micro, Small and Medium Enterprises	0.07	0.05	0.88
Ministry of Mines	0.23	0.57	0.20
Ministry of Minority Affairs	0.61	0.01	0.38
Ministry of New And Renewable Energy	0.65	0.00	0.35
Ministry of Panchayati Raj	0.79	0.03	0.18
Ministry of Petroleum and Natural Gas	0.24	0.22	0.53
Ministry of Power	0.16	0.19	0.65
Ministry of Railways	0.29	0.68	0.03
Ministry of Road Transport And Highways	0.07	0.30	0.63
Ministry of Rural Development	0.29	0.64	0.07

Table 2: Partitioning the Sources of Forecast Errors: Bias and Random Components

Accessed at https://www.nipfp.org.in/publications/working-papers/1996/

Ministry of Science and Technology	0.89	0.11	0.00
Ministry of Skill Development And Entrepreneurship	0.93	0.01	0.06
Ministry of Social Justice And Empowerment	0.03	0.04	0.93
Department of Space	0.09	0.02	0.90
Ministry f Steel	0.07	0.15	0.78
Ministry of Textiles	0.02	0.12	0.86
Ministry of Tourism	0.25	0.30	0.45
Ministry of Tribal Affairs	0.07	0.05	0.88
Ministry of Women And Child Development	0.64	0.06	0.30

Source: (Basic data), Finance Accounts (various years), Government of India

Table 2 gives the results obtained after bifurcating the errors in revised estimates into systematic and random component. In case of revised estimates, Ministry of Rural Development and Ministry of Railways reported highest systematic errors whereas Ministry of Tourism and Ministry of Steel reported the lowest systematic error at around 0.07 (Table 2). For both budget and revised estimates, there is space for improvement of forecast error since the systematic component is greater than the random component in majority of ministries. This implies that the fiscal marksmanship may be enhanced by using more effective policy innovations to manage the tight fiscal space within the fiscal regulations.

6. Subnational Fiscal Space for Climate Change Commitments

The State Action Plans (SAPs) for climate change commitments are not homogeneous, and each State in India has prepared the SAP as per the specificities of climate change related risks and uncertainities. The estimates in the previous section however are confined to the Demand for Grants analysis of national budgets. Given the principle of subsidiarity, the decisions relate to climate change considerations especially adaptation - need to be taken at the level closest to the people. The meticulous analysis of all the Detailed Demand for Grants across all States of India scanned for the intensity of identified components of adaptation is a task beyond the scope of present paper. However, at the aggregate level, we identified the plausible discretionary fiscal space available at the aggregate level to the State governments to undertake the climate change commitments. The classification of budgetary transactions into developmental (economic services and social services) and nondevelopmental (general services including interest payments, salaries and pensions) for the purpose of identifying the plausible fiscal space for climate change commitments. At aggregate State level, the Reserve Bank of India analysis of public expenditure across the States of India revealed that developmental spending is around 60 percent of total public expenditure (Table 3).

Year	Aggregate Public Expenditure Year Development* Non- Others** Total					
rear	Development.	Development*	Others	Total (in crores)		
1	2	3	4	(in crores)		
2004-05	2,86,473.0	1,85,152.0	4 81,803.0	5,53,428.0		
2004-05	(51.8)	(33.5)	(14.8)	(100.0)		
2005-06	3,30,044.1	1,90,020.6	41,616.8	5,61,681.6		
2005-00	(58.8)					
2006-07	3,92,165.0	(33.8) 2,11,872.4	(7.4) 53,242.9	(100.0) 6,57,280.3		
2000-07						
2007-08	(59.7) 4,64,462.0	(32.2) 2,33,232.8	(8.1) 54,629.6	(100.0) 7,52,324.4		
2007-08			,			
2000.00	(61.7)	(31.0) 2,54,981.4	(7.3) 60,265.2	(100.0) 8,82,332.8		
2008-09	5,67,086.2					
2000 10	(64.3)	(28.9)	(6.8)	(100.0)		
2009-10	6,37,731.1	3,07,547.0	70,051.7	10,15,329.8		
0010 11	(62.8)	(30.3)	(6.9)	(100.0)		
2010-11	7,20,354.7	3,57,287.4	81,087.6	11,58,729.7		
	(62.2)	(30.8)	(7.0)	(100.0)		
2011-12	8,52,405.6	4,01,059.4	98,147.3	13,51,612.3		
	(63.1)	(29.7)	(7.3)	(100.0)		
2012-13	9,72,256.5	4,46,878.9	1,15,119.4	15,34,254.8		
	(63.4)	(29.1)	(7.5)	(100.0)		
2013-14	10,76,452.2	5,04,548.4	1,25,144.0	17,06,144.5		
	(63.1)	(29.6)	(7.3)	(100.0)		
2014-15	13,25,989.2	5,66,467.4	1,33,326.0	20,25,782.5		
	(65.5)	(28.0)	(6.6)	(100.0)		
2015-16	15,84,006.2	6,29,349.3	1,46,873.2	23,60,228.7		
	(67.1)	(26.7)	(6.2)	(100.0)		
2016-17	18,31,163.8	7,10,365.1	1,66,686.4	27,08,215.3		
	(67.6)	(26.2)	(6.2)	(100.0)		
2017-18	18,77,392.3	8,25,774.0	2,21,432.9	29,24,599.2		
	(64.2)	(28.2)	(7.6)	(100.0)		
2018-19	21,00,801.6	9,44,483.7	2,92,428.1	33,37,713.3		
	(62.9)	(28.3)	(8.8)	(100.0)		
2019-20	21,63,340.6	10,05,162.7	3,26,499.3	34,95,002.6		
	(61.9)	(28.8)	(9.3)	(100.0)		
2020-21	22,64,470.7	10,63,162.2	3,69,859.4	36,97,492.3		
	(61.2)	(28.8)	(10.0)	(100.0)		
2021-22 (BE)	29,11,369.4	12,87,938.2	4,23,804.2	46,23,111.7		
	(63.0)	(27.9)	(9.2)	(100.0)		
2021-22 (RE)	29,22,422.8	12,40,854.3	4,33,289.0	45,96,566.0		
	(63.6)	(27.0)	(9.4)	(100.0)		
2022-23 (BE)	32,34,504.4	14,18,957.3	4,79,783.6	51,33,245.2		
	(63.0)	(27.6)	(9.3)	(100.0)		
<i>Jate</i> : RE : Revised Estimates BE : Budget Estimates * : Includes expenditure on revenue and capital accou						

Table 3: State Level Development and Non-Development Expenditure as % of Aggregate Public Expenditure

Note: RE : Revised Estimates. BE : Budget Estimates.* : Includes expenditure on revenue and capital account and loans and advances extended by State government and UTs. ** : Includes Grants-in-Aid and Contributions (Compensation and Assignments to Local Bodies), Discharge of Internal Debt and Repayment of Loans to the Centre. Figures in parentheses are percentage to total. Data from 2017-18 onwards include Delhi and Puducherry also.

Source: RBI and Budget documents of the State governments (various years) .

Following an open-ended approach, identifying the public expenditure for climate change, specifically adaptation-related spending can be identified based on (i) crop improvement and research; (ii) drought proofing and flood control; (iii) forest conservation; (iv) poverty alleviation and livelihood preservation; (v) rural education and infrastructure; (vi) health; (vii) risk financing and (viii) disaster management across

all States of India is the crucial prelude to subnational fiscal marksmanship analysis of climate commitments by all the State governments. State-specific mapping of adaptation-related fiscal space and its marksmanship is an area of future research.

7. Conclusion

The paper conducts the ministry wise fiscal marksmanship analysis for climate change spending. The sources of errors, disaggregated into biasedness, unequal variation, and random components are analysed across sectors. In the sectors where the systematic component of forecasting errors are relatively higher, it can be reduced by using better forecasting methods. A State level decomposition of the fiscal marksmanship estimates to understand the sources of errors – systemic bias or random– is an area of future research; and this analysis would be conducted only after sorting out the intertemporal comparability issues in the detailed demand for grants across sectors. In this paper, the analysis is confined to identifying only the fiscal space for developmental spending and it is revealed that the discretionary fiscal space available for plausible climate change commitments in the developmental spending category constitutes around 60 per cent of total spending. Identifying the specifically targeted public spending related to climate change across all States and analysing its fiscal markmanship can further the subnational inferences, which is an area of future research.

References

- Allan, C. M. 1965. "Fiscal Marksmanship, 1951–63." Oxford Economic Papers (New Series) 17(2): 317–27.
- Asher, M. G. 1978. Accuracy of Budgetary Forecasts of central Government, 1967–68 to 1975–76. *Economic and Political Weekly* 13(8).
- Auld, D. A. L. 1970. Fiscal Marksmanship in Canada. *The Canadian Journal of Economics* 3(3): 507–11.
- Beetsma, R. M. W. J., and H. Jensen, 2004. Mark-Up Fluctuations and Fiscal Policy Stabilization in a Monetary Union. *Journal of Macroeconomics* 26: 357–76.
- Bosello, F., Carraro, C., & De Cian, E. 2010. Climate policy and the optimal balance between mitigation, adaptation and unavoided damage. *Climate Change Economics*, 1(02):71-92.
- Brück, T., and A. Stephan, 2005. "Do Eurozone Countries Cheat with their Budget Deficit Forecasts?" Europa-Universität Viadrina Frankfurt (Oder) Postgraduate Research Programme Working Paper No. 2005.5. Frankfurt: European University Viadrina Frankfurt (Oder).
- Bucerius, S. M., Roberts, B. W., & Jones, D. J. 2021. The effect of the COVID-19 pandemic on domestic violence and child abuse. *Journal of Community Safety and Well-Being*, 6(2):75-79.
- Cassidy, G., M. S. Kamlet, and D. S. Nagin, 1989. An Empirical Examination of Bias in Revenue Forecasts by State Governments. *International Journal of Forecasting* 5(3): 321–31.
- Chakraborty, Lekha, Ajay Narayan Jha, Amandeep Kaur, Jitesh Yadav and Balamuraly B., (forthcoming). "COP27 and Public Expenditure for India's First National Adaptation Communication", NIPFP Working Paper. New Delhi: National Institute of Public Finance and Policy (NIPFP).
- Chakraborty, Lekha, Pinaki Chakraborty and Ruzel Shrestha, 2019. "Fiscal Behaviour of Subnational Governments: Analysing the Forecast errors", invited paper for the 75th Annual Congress of the International Institute of Public Finance (IIPF), Glasgow, Scotland, UK, August 21-23, 2019.
- Chakraborty, L., and D. Sinha, 2018. "Has Fiscal Rule Changed the Fiscal Marksmanship of Union Government." NIPFP Working Paper No. 234. New Delhi: National Institute of Public Finance and Policy (NIPFP).
- Chakraborty, Lekha, Pinaki Chakraborty and Ruzel Shrestha, 2020. "Budget Credibility of Subnational Governments: Analyzing the Fiscal Forecasting Errors of 28 States in India" Levy Economics Institute Working Paper No. 964. New York.

- Chakrabarty, T. K., and W. Varghese, 1982. "The Government of India's Budget Estimation: An Analysis of the Error Components." Reserve Bank of India, Occasional Papers 3(2): 175–90.
- Davis, J. M. 1980. "Fiscal Marksmanship in the United Kingdom, 1951–1978." The Manchester School 48(2): 111–28.
- IPCC, 2007. Climate Change 2007: Climate Change Impacts, Adaptation and Vulnerability, Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
- Intriligator, M. D. 1978. Econometric Models, Techniques, and Applications. Upper Saddle River, NJ: Prentice-Hall.
- Kumari, A., and B. B. Bhattacharya, 1988. Budget Forecasts of Central Government Revenue and Expenditure: A Test of Rational Expectation. *Economic and Political Weekly* 23(26).
- Morrison, R. J. 1986. "Fiscal Marksmanship in the United States: 1950–1983." The Manchester School 54(3): 322–33.
- Nitan, K., and R. Roy, 2015. Finance Commission of India's Assessment: A Political Economy Contention between Expectations and Outcomes. *Applied Economics* 48(2): 73–88.
- Nyong, Anthony., Francis Adesina, and B. Osman Elasha, 2007. The value of indigenous knowledge in climate change mitigation and adaptation strategies in the African Sahel. *Mitigation and Adaptation strategies for global Change* 12 (5): 787-797.
- Pattnaik, R. K. 1990. "Fiscal Marksmanship in India." Reserve Bank of India Occasional Papers 11(3).
- Pindyck, R. S., and Rubinfeld, D. L. 1998 Econometric Models and Economic Forecasts. New York: Irwin/McGraw-Hill.
- Rullán, X. O., and J. R. Villalonga, 2018. Determinants of Regional Budget Forecast Errors in Federal Economies: Spain 1995–2013*. *Review of Public Economics* 226(4): 85–121.
- Samuel, P., and C. Rangarajan. 1974. Short-Term Investment Forecasting. Noida: Macmillan India.
- Shrestha, R., and L. Chakraborty, 2019. "Practising Subnational Public Finance in an Emerging Economy: Fiscal Marksmanship in Kerala." NIPFP Working Paper No. 261. New Delhi: National Institute of Public Finance and Policy.
- Strauch, R., M. Hallerberg, and J. V. Hagen, 2004. "Budgetary Forecasts in Europe The Track Record of Stability and Convergence Programmes" ECB Working Paper No. 307. Germany: European Central Bank (ECB)

- Theil, H. 1958. Economic Forecasts and Policy. Amsterdam: North Holland.
- Theil, H. 1966. 'Applied Economic Forecasting', Amsterdam, North Holland.
- United Nations Environment Programme, 2021. Adaptation Gap Report 2021: The gathering storm Adapting to climate change in a post-pandemic world. Nairobi.

MORE IN THE SERIES

- Rudrani Bhattacharya (2023), <u>Does</u> <u>Monetary Policy in India Anchor</u> <u>Inflation Expectation?</u>, WP No. 394 (April)
- Supriyo De (2023), <u>Direct Taxes</u> <u>Litigation Management And</u> <u>Alternate Dispute Resolution</u>, WP No. 394 (April)
- Supriyo De (2023), <u>Recent Reforms</u> in India's Corporate Income Tax <u>Regime: Rationale, Impacts and</u> <u>Improvements</u>, WP No. 393 (April)

Lekha Chakraborty, is Professor, NIPFP Email: <u>lekha.chakraborty@nipfp.org.in</u>

Ajay Narayan Jha, former Finance Secretary, Government of India. Email: <u>an.jha@nipfp.org.in</u>

Jitesh Yadav, Research Fellow (till March 2023) jitesh.yadav@nipfp.org.in

Amandeep Kaur, Economist Email: amandeep.kaur@nipfp.org.in

Balamuraly B, Research Intern (till March 2023) <u>balamuraly.nair@nipfp.org.in</u>

National Institute of Public Finance and Policy, 18/2, Satsang Vihar Marg, Special Institutional Area (Near JNU), New Delhi 110067 Tel. No. 26569303, 26569780, 26569784 Fax: 91-11-26852548 www.nipfp.org.in