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Abstract

This paper measures resource use efficiency of electricity
generating plants in the United States under the SO2 trading regime.
Resource use efficiency is defined as the product of technical efficiency
and environmental efficiency, where the latter is the ratio of good output
(electricity) to bad output (SO2) with reference to the best practice firm,
i.e., one that is producing an optimal mix of good and bad outputs.  This
concept of environmental efficiency is similar to that of output oriented
allocative efficiency.  Using output distance functions we compare three
methods for the calculation of resource use efficiency, namely, stochastic
frontier analysis (SFA), deterministic parametric programming and non-
parametric linear programming.  This paper reveals the strengths and
weaknesses of these methods for estimating efficiency. Both SFA and
linear programming approaches can estimate the efficiency scores.  For
plants in the dataset the overall geometric mean of the three methods for
technical efficiency, environmental efficiency and resource use efficiency
is 0.737, 0.335 and 0.248, respectively.  The rank correlation coefficient
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between technical efficiency, environmental efficiency and resource use
efficiency is 0.213, 0.617 and 0.877, respectively.  The regression
analyses of performance across plants shows units in phase I of the SO2
trading programme are negatively related to measures of economic and
environmental performance. This suggests that the market for SO2
allowances, per se, may not be minimizing compliance cost.  We also
find that a decrease in SO2 emission rates not only increases
environmental efficiency but also leads to an increase in resource use
efficiency.  This finding concurs with the hypothesis that enhancement in
the environmental performance of a firm leads to an increase in its
overall efficiency of resource use as well.

Key Words: Technical Efficiency, Environmental Efficiency, Resource-
Use Efficiency, Distance Functions, SO2 Allowance Program.
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Resource Use Efficiency of US
Electricity Generating Plants
during the SO2 Trading Regime:
A Distance Function Approach

Introduction

The World is witnessing a growing global interest in the potential
of market-based instruments (MBIs) for pollution prevention. Cost-
effectiveness is advocated the advantage of MBIs in comparison to
conventional regulation namely, command and control (CAC) measures.
A new alliance of policy makers, enlightened industrialists and
environmentalists has emerged, which sees MBIs both as a necessary
complement to market-friendly economic policies, and as a powerful tool
for reducing environmental damage and conserving natural resources. A
number of countries, mainly in Europe and the USA, have instituted
pollution prevention policies based on economic incentives and market
based instruments. Recent tradable permit schemes in the USA puts the
prescription provided by the economists to real test. The experience of
USA's tradable permit scheme can be utilized in formulating the
environmental policies in developing countries like India, which are
looking for the application of MBIs to tackle their environmental problems
in a market-oriented environment.

To achieve competitiveness, firms should use marketable inputs
(conventional resources) as efficiently as possible, and to be an
environment-friendly they should use the environment (natural
resources) efficiently. Porter and van der Linde (1995) visualise pollution
as inefficiency in production process. According to them enhancement in
environmental performance of a firm leads to increase in the resource
use productivity of the firm. This raises the question whether firms use
conventional resources and natural resources efficiently, and whether
technical and environmental efficiencies are compatible. Reinhard (1999)
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has defined the resource use efficiency as the product of technical
efficiency and environmental efficiency of production units. Technical
efficiency measures how far is a firm from the best practicing of its
colleague in terms of the usage of conventional inputs. Environmental
efficiency evaluates a firm in terms of the optimality of output-mix, i.e. it
compares the good to bad output ratio of a firm with the firm that is
producing the highest quantity of good output for a given level of bad
outputs.

The measurement of environmental performance of firms has
recently received increasing attention. A variety of environmental
performance indices have been proposed in the literature, and they can
be grouped into two categories: those that adjust conventional indices of
productivity change, and those, which adjust conventional measures of
technical efficiency. In both cases the adjustment has taken the form of
incorporating quantifiable environmental effects into the output vector. To
account for more inputs and outputs, Fare et. al. (1989) has developed a
vector of environmental performance measure. They evaluate producer
performance in terms of the ability to obtain an equi-proportionate
increase in desirable output and reduction in undesirable output. They
use a nonparametric mathematical programming technique known as
Data Envelopment Analysis (DEA) to construct their best-practice frontier
(see also Ball et. al., 1994; Tyteca, 1997; Zaim and Taskin, 2000;
Khanna et. al., 2002). The literature computes output possibility sets
under alternative assumption about output disposability. The technology
is assumed to satisfy strong disposability when a firm can dispose of its
bad outputs without incurring any cost and weak disposability implies
that a firm has to incur some cost for reducing the bad outputs.  The ratio
of the efficiency scores under strong and weak disposability of bad
outputs determines the environmental performance indicator.
Mathematical programming techniques are also used to calculate the
parameters of an output distance function (see Fare et. al., 1993;
Coggins and Swinton, 1996; Kumar and Rao, 2002; Murty and Kumar,
2002, 2004). In these studies shadow prices of the undesirable outputs
are calculated by imposing the weak disposability of the production
technology with respect to bad outputs- that is outputs can be disposed
of radially. The weak disposability of bad outputs seems to be a
reasonable assumption, but Murty and Russell (2002) raise the question
on the validity of this assumption and show that such type of
specification of production technology is not consistent with the material
balance approach. Therefore in the present study for the measurement
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of environmental performance of firms we do not impose restrictions on
the curvature of the output possibility set.

Some studies (e.g., Tyteca, 1997; and Reinhard et. al., 1999)
define environmental efficiency as the ratio of minimum feasible to
observed use of an environmentally detrimental input, conditional on
observed levels of the desirable output and conventional inputs. Their
definition of environmental efficiency implies technical efficiency and not
necessarily a small amount of bad output per unit of good output, and
thus the environmental efficiency score differs for the firms who are
operating on the same technically efficient frontier. Therefore, we follow
Fare et. al. (2000) in constructing the index of environmental efficiency.
Fare et. al. (2000) follows an index number approach for constructing the
index of environmental efficiency using distance functions in a multi-
output case. This index is equivalent to the ratio of good to bad output in
a single good and a single bad output situation and it satisfies all of the
desirable properties of index numbers.

There are various methods for computation of efficiency scores,
but three are of particular interest: parametric linear programming
methods (e.g., Forsund and Hjalmarsson, 1987; Fare et. al., 1993; Murty
and Kumar, 2003); data envelopment analysis, (DEA) (e.g., Färe et. al.,
1989; Khanna et. al. 2002); and econometric methods (e.g., Hetemaki,
1996; Kumar and Rao, 2003; Murty and Kumar, 2003). According to
Lovell (1993), there are two essential differences between the
econometric approach and mathematical programming methods. The
econometric approach is stochastic, and so attempts to distinguish the
effects of noise from the effects of inefficiency. Mathematical
programming (parametric or non-parametric) approach is non-stochastic
and lump noise and inefficiency together, calling the combination
inefficiency. The econometric and parametric mathematical programming
approach is parametric, and confounds the effects of misspecification of
functional form (of both technology and inefficiency) with inefficiency.
Hjalmarsson et. al. (1996) argues that one of the main appeals of the
stochastic frontier approach is the possibility it offers for a specification in
the case of panel data. It also allows for a formal statistical testing of
hypotheses. The DEA approach is non-parametric and less prone to this
type of specification error. In DEA the number of outlier firms tends to
increase as variables are added to the model. This results in loss of
information, in particular when the sample size is small.
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The vast majority of empirical efficiency measurement literature
utilises only one of the above-mentioned methods. In this paper we use
all the three approaches for the purpose of estimating the components of
resource use efficiency. This aim to shed some light upon the sensitivity
of empirical results to the selection of estimation method. Moreover, the
time-series literature is in favor of using the average of the predictions
from a number of models. The average of the various methods to form
efficiency predictions may potentially be better than from any one
particular method. For example, in a paper discussing various methods
of combining time-series predictions, Palm and Zellner (1992, p.699)
observe that "In many situations a simple average of forecasts will
achieve a substantial reduction in variance and bias through averaging
out individual bias". The averaging approach is adopted by Coelli and
Parelman (1999) in measuring the relative performance of European
Railways, and by Drake and Simper (2003) in measuring the efficiency of
English and Welsh police force.

We measure the resource use efficiency and its components for
a sample of US electricity generating firms during the SO2 allowances
trading period. This application helps to test the hypothesis that
environmental efficiency and technical efficiency are compatible and
whether trading of the sulfur emissions has affected the various
measures of efficiency. Title IV of the 1990 Clean Air Act Amendments
(CAAA) establishes a market for transferable SO2 emissions allowance
among electric utilities. The program is divided in two phases. Phase I
affects 110 of the dirtiest plants. The phase I units could emit at the rate
of an emission rate of 2.5 pounds of SO2 per million BTUs of heat input;
but all other units of fossil-fueled power plants can annually emit at the
rate of 1.2 pounds of SO2 per million BTUs of heat input. In phase II, all
major plants can emit at the rate of 1.2 pounds of SO2 per million BTUs
of heat input. The heat input is based on the 1985-87-reference period.
Electricity generating firms can now transfer allowance among their own
facilities, sell them to other firm, or bank them for use in future years.
Thus the flexibility provided by this program enables the generating units
to pursue a variety of compliance options to meet the regulation
obligations, including scrubber installation, fuel switching, energy
efficiency and allowance trading. Through emissions trading electricity
generating firms have the incentive to find the lowest-cost means of
achieving compliance and to reap financial rewards for developing those
means.



11

Previous studies have tried to examine the gains from trading in
emissions in comparison to command and control alternatives such as
forced scrubbing and a uniform emission rate standard (e.g., Carlson et.
al., 2000). Some studies have tried to judge whether there remain
opportunities to reduce abatement costs through allowance trading even
after plant owners have taken advantages of other cost reducing
opportunities (e.g., Swinton, 2002; Coggins and Swinton, 1996).
Although the trading program seems to be successful in reducing
atmospheric emissions of sulfur dioxide, it is not clear, however, whether
or not the program has resulted in minimizing the compliance costs
(Swinton, 2004). But none of these studies have tried to examine the
impact of trading and reductions in emission rates on the resource use
efficiency of these plants.

The paper is organized as follows: Section 2 discusses
theoretical construct of the concept of resource use efficiency and its
components, viz. technical efficiency and environmental efficiency.
Section 3 presents the measurement and the three methods of
estimation that are considered in the empirical analysis. In Section 4 we
briefly discuss the US electricity generation data, while in Section 5 the
empirical results are presented and discussed. The final section contains
concluding remarks.

II. Theoretical Construct

Farrell (1957) developed the basis of standard efficiency
methodology. The input saving efficiency consists of two components: (i)
technical efficiency, which reflects the ability of a firm to contract inputs
from a given set of outputs, and (ii) allocative efficiency, which reflects
the ability of a firm to use the inputs in the optimal proportions, given
their respective prices. These two components are then combined to
provide a measure of total economic efficiency (overall efficiency). The
output augmenting efficiency consists of two components: (i) technical
efficiency, which reflects the ability of a firm to augment outputs from a
given set of inputs, and (ii) allocative efficiency, which reflects the ability
of a firm to produce the outputs in the optimal proportion, given their
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respective prices.  Thus the analysis of efficiency can have an input-
conserving orientation or an output-augmenting orientation. Efficiency is
a relative measure; efficiency scores depend on the firms that are
compared.

Measurement of output-oriented measures of efficiency requires
data on input and output quantities and output prices, which is illustrated
in figure 1. First take the case when the firm is producing all the good
outputs that have positive prices. Suppose V is one such observation
where a firm is operating, the technical efficiency of this firm is TE=
OV/OD. The overall efficiency is defined as: OE= ry / R(x,r), and is equal
to OV/OE. It is the ratio of observed revenue to maximum revenue.
Where R(x,r) is the maximum revenue, ry is the observed revenue of a
firm, x and y are the input and good output vectors,  and r is the output
price vector. Allocative output efficiency is defined as: AE={ry/ TE}/
R(x,r), and it equal to OD/OE in Figure 1. Thus from the figure it follows
that, OE=TE.AE.

Now we extend this case in a situation where a firm is producing
one marketable product, y along with an undesirable output, z (pollution).
The desired output has positive market prices but the undesirable output
has either zero or negative price. Its price is negative when a tax in
imposed on its production. Now we assume that in the production
possibility set there are no points on the left of the line OB, due to
technical or biological restrictions or we can term it that the production of
good and bad outputs are null-joint. The assumption of null-jointness
implies that some positive quantity of bad outputs is necessarily
produced when we are producing some positive amount of good outputs.
Therefore, point B in figure 1 is the single point where all of the
resources conventional as well as natural are utilized efficiently. Because
(i) point B is on the frontier, so the conventional resources (inputs) are
used in a technically efficient manner, and (ii) in point B the natural
resources are used optimally, since it is located on the radial with the
lowest production of undesirable outputs per unit of desirable output.

Point B in the figure can be defined as

(Y1, Z1)∈P(x), where R(x,r) = max{ryy+rzz: (Y1, Z1) ∈P(x), rz≤0}
where ry and rz are the vector of prices of good and bad output
respectively, and R(x.r) is the revenue function, which is the dual to the
output distance function (Fare and Primont, 1995).
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We use output distance function to measure the technical
efficiency of a firm. In the figure, the technical output-oriented efficiency
measure (TE) at output bundle V is TEV(YV, ZV, X) = Do(YV, ZV, X) and is
equal to OV/OD. A firm is environmentally efficient if it is producing the
lowest amount of undesirable output per unit of desirable output, i.e.
point B in the figure. The measure of environmental efficiency (EE) has
to relate the ratio of good and bad output at point D (equal to the ratio at
V) to the maximum ratio at point B. This measure of environmental
efficiency relates the observed output mix at the frontier with the optimal
output mix, which for the output bundle V is equal to

EEV (YV,ZV,XV,ry, rz) = 
)(

)()(
rx,

x,z,yzryr vvvvzvy

R
Do+

where R(x,r) = max{ryy+rzz: (Y, Z) )∈P(x), rz≤0}. If rz is equal to zero, the
maximum revenue line shifts from aa to BB' and EEV is given by OD/OF
and if rz is negative due to a tax on the bad output, the maximum
revenue line shifts to BB’’, then EEV is given by OD/OG. A more negative
price of bad output (a more damaging bad output) leads to smaller
environmental efficiency scores. Alternatively said, if a firm is
environmental efficient at point B then any point of operation of a firm to
the right of this point reveals the departure from environmental efficiency.

Recall that point B in the figure is ‘resource use efficient’, since
at this point the conventional resources as well as the natural resources
are used efficiently. We want to compare point V to the resource use
efficient point B. A convenient measure of resource use efficiency (RE) is
the definition of overall output efficiency (Reinhard, 1999). RE compares
the observed revenue at point V to the resource use efficient point B. RE
for the output bundle V is equal to

REV (YV,ZV,XV,ry, rz) = 
)(

)(
rx,

zryr vzvy

R
+

Or OV/OF when the price of bad output is zero and OV/OG when the
price of bad output is negative or its production is taxed. That is, more
negative the price of bad output smaller the RE score will be. Therefore,
resource use efficiency can be decomposed into a technical efficiency
and an environmental efficiency component, i.e. REV= TEV.EEV. It follows
that RE is analogous to overall economic efficiency and EE is analogous
to allocative efficiency.
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III. Measurements and Estimation

III.1 Measurements of Technical and Environmental
 Efficiency

In this section we describe how to measure the technical and
environmental efficiency of a polluting firm. In short, we defined the
environmental efficiency as the ratio of a good output quantity index and
a quantity index of bad outputs. Each of the two indexes is based on
distance functions. In measuring the technical efficiency we scale the full
output vector, but when we measure environmental efficiency of a firm
rather than scaling the full output vector, we scale good and bad outputs
separately. Thus our environmental efficiency index is developed using
'sub-vector' distance functions.

Technology of polluting firms can be specified by production,
cost and profit functions. The output and input distance functions
generalize the production technology of a multi-output firm. Assume that
a vector of inputs N

N Rxxx +∈= ),.....,( 1  produces a vector
M

M Ryyy +∈= ),....,( 1 of good output and a vector
J

J Rbbb +∈= ),....,( 1 of bad outputs, then we define the production
technology as

)},( producecan  :),,{( byxbyxT = (1)

In addition to this property on the technology T, we assume that
it meets standard properties like closedness and convexity, see Fare and
Primont (1995) for details.

The output distance function is defined as,

]}/),(,inf[{),,( TbyxbyxDo ∈= θ (2)

Equation (2) characterizes the output possibility set by the
maximum equi-proportional expansion of all outputs consistent with the
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technology set (1). Output distance function is non-decreasing, positively
linearly homogeneous and convex in outputs and decreasing in inputs.
The output distance function takes a value, which is less than or equal to
one if the output vector is an element of the feasible production set.
Furthermore, the distance function will take a value of unity if output
vector is located on the outer boundary of the production possibility set.

The input distance function is defined as

])},(,/inf[{),,( TbyxbyxDi ∈= λ (3)

Equation (3) characterizes the input possibility set by the
maximum equi-proportional contraction of all inputs consistent with the
technology set (1). The input distance function is non-decreasing,
positively linearly homogenous and concave in inputs and increasing in
outputs. The distance function will take a value, which is greater than or
equal to one if the input vector is an element of the feasible input set.
Furthermore, the distance function will take a value of unity if input
bundle is located on the inner boundary of the input set.

Both the input and output distance functions are capable of
handling multi-output technologies, and both are the radial measures of
technical efficiency. Both of these measures require data only on the
quantities of inputs and outputs. The input distance function provides the
measure of input savings that can be had for the given level of outputs
and output distance function measures the maximum proportional
expansion of outputs for the given inputs. Under constant returns to
scale they are reciprocal to each other.

To formulize the good output quantity index, we define a sub-
vector output distance function on the good outputs as

}),/,(:inf{),,( TbyxbyxDy ∈= θθ .

This distance function expands good outputs as much, as is
feasible, while keeping inputs and bad outputs constant. Note that it is
homogeneous of degree +1 in y . Let 0x  and 0b  be our given inputs
and bad outputs, then the good output index compares two output
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vectors ky and ly . This is done by taking the ratio of two distance
functions, and hence, the good output index is:

),,(

),,(
),,,( 00

00
00

byxD

byxD
yybxQ l

y

k
ylk

y = .

This quantity index satisfies some of Fisher's (1922) important
tests like homogeneity, time reversal, transitivity, and dimensionality.

The index of bad outputs is constructed using an 'input' distance
function approach. The argument is obvious; it is desirable to reduce
such outputs. Thus the input based distance function is defined as

})/,,(:sup{),,( TbyxbyxDb ∈= λλ .

This distance function is homogeneous of degree +1 in bad
outputs, and it is defined by finding the maximal contraction in these
outputs. Given ),( 00 yx , the quantity index of bad outputs compares

kb and lb  again using the ratios of distance functions i.e.,

),,(
),,(

),,,( 00

00
00

l
b

k
blk

b byxD
byxD

bbyxQ = .

Like the good index, ),,,( 00 lk
b bbyxQ  satisfies the above-

mentioned Fisher tests.

Following Fare, Grosskopf, and Hernandez-Sancho (2000), we
define the environmental efficiency index as the ratio of two quantity
indexes, i.e.,

),,,(

),,,(
),,,,,,( 00

00
000.

lk
b

lk
ylklklk

bbyxQ

yybxQ
bbyybyxE =

This efficiency index follows the tradition of Hicks-Moorsteen1 by
evaluating how much good output is produced per bad output. In the
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simple case of one good and one bad output, the index takes the
following simple form due to homogeneity of the component distance
functions

l

l

k

k

lk

b
y

b
y

E =.

This one bad one good index shows that the index is the ratio of
average good per bad output for k and l  firms. In our this case we
compare the firms with the firm who is producing the largest quantity of
good output per unit of bad output and the environmental efficiency index
for this firm is one i.e. it is producing the optimal combination of good and
bad outputs.

III. 2 Estimation Models

Stochastic Frontier Estimation Method

The econometric formulation of the output distance function can
be expressed as

             Do = f(x, y)exp ε

where ε is the random disturbance term and is assumed to be
independently and identically distributed (iid) as N(0, σε

2). In econometric
estimation, the basic problem with output distance function is the inability
to observe the dependent variable. Further if the function is assumed to
efficient (i.e. Do = 1), the left hand side of the equation is invariant, an
intercept can not be estimated, and the ordinary least squares (OLS)
parameter estimates will be biased.

To solve this problem, we utilize the property that the output
distance function is homogenous of degree +1 in outputs (Lovell et al.,
1990; Grosskopf et al., 1996; and Kumar and Rao, 2003).

            λDo(x, y) = Do(x, λy) (4)

Now suppose λ = 1/ym, then
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           1/ymDo(x, y) = Do(x, y/ym) (5)

From the econometric formulation of output distance function

            Do(x, y) /ym ≥ Do(x, y/ym) (6)

Equation (6) can be converted into a stochastic frontier model for
Do by introducing the composed error term.

ln (1/ym) = TL(x, y/ym)+u+v (7)

where v refers to random shocks and noise, u represents the
production inefficiency and TL stands for the translog form of the
distance function when the outputs are scaled by the mth output. It is
assumed that v is iid as N(0, σv

2), and u is assumed to be distributed
independently of v and to satisfy u≤0. After having estimated (7),
E[ukv+u] is calculated for each plant from which plant-specific measures
are computed as

              Do(x, y) = exp[-E{uv+u}] (8)

The composed error structure was originally formulated in a
production function setting by Aigner et. al. (1977) and in the context of
the output distance function it was first used by Grosskopf and Hayes
(1993), and later by Hetemaki (1996), and Kumar and Rao (2003). Like
that, the sub-vector output distance function can be estimated. To
estimate the sub vector output distance function when the objective is to
increase the good output only for the given level of conventional inputs
and bad outputs, the distance function takes the form of conventional
production function in which bad outputs enters as inputs. When we are
estimating the sub vector distance function in which the objective is to
contract the bad outputs for the given level of good output and the
conventional inputs, the distance function, as mentioned above, behave
like an input distance function. The input distance function has also the
property of homogeneity of degree one in inputs. By utilising this property
of homogeneity, we estimate this sub vector distance function that takes
the form of stochastic cost function, which again can be estimated by the
procedure of Aigner et. al. (1977).
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The parametric linear programming method

The method was developed and first applied by Aigner and Chu
(1968) to estimate the single output production frontier. It was Fare et. al.
(1993) who used it for the first time for multi-output production
technology using the translog output distance function. This method
involves specifying a parametric form for the production technology and
use linear programming (LP) to compute parameter values, which
provide the closest possible envelopment of the observed data. The
translog output distance function for our case is specified as:

ln D0 (x, y, b) = α0+∑
=

N

n 1

αn ln xn +
2
1 ∑

=

N

n 1
∑

=

N

n 1'

αnn’ ln xn ln xn’ +∑
=

M

m 1

βm ln

ym+
2
1 ∑

=

M

m 1
∑

=

M

m 1'

βmm’ ln ym ln ym’
 +∑

=

J

j 1

γj ln bj+
2
1 ∑

=

J

j 1
∑

=

J

j 1'

γjj’ ln bj ln

bj’+∑
=

N

n 1
∑

=

M

m 1

δnm ln xn ln ym+∑
=

N

n 1
∑

=

J

j 1

ηnj ln xn ln bj+∑
=

M

m 1
∑

=

J

j 1

ϕmj ln ym

ln bj

where: n=1,2,… … .,N (number of inputs),
m=1,2,… … ,M (number of desirable outputs),
j= 1,2,… … .,J (number of undesirable outputs)

The isoquant of the output set corresponds to ln D0 (x, y, b) = 0 and
the interior points:     -∞< ln D0 (x, y, b)≤0. Therefore, this is accomplished
by solving the problem,

Max ∑
=

I

i 1

[ ln D0 (x, y, b)- ln 1],     

Subject to
(i)  ln D0(x, y, b) ≤ 0

(ii)  ∑
=

M

m 1

βm +∑
=

J

j 1

γj = 1

∑   αnn’ =∑   βmm’ =∑   γjj’ =∑δnm =∑ηnj =∑ϕmj =0
(iii) αnn = αnn’

 βmm = βmm’

  γjj = γjj’
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The objective function minimises the sum of the deviations of
individual observations from the frontier of technology. Since the
distance function takes a value of less than or equal to one, the natural
logarithm of the distance function is less than or equal to zero, and the
deviation from the frontier is less than or equal to zero. Hence the
maximisation of the objective function implies minimisation of the sum of
deviations of individual observations from the frontier. The constraints in
(i) restrict the individual observations to be on or below the frontier of the
technology. The constraints in (ii) impose homogeneity of degree +1 in
outputs. Finally, constraints in (iii) impose symmetry.

As stated above output distance function measures the technical
efficiency of a firm relative to its colleagues. To measure the
environmental efficiency we need to estimate two sub-vector distance
functions. To estimate the parameters of the sub-vector output distance
function where the objective of the firm is to expand the good output only
for the given level of bad outputs and inputs, the constraints in (ii)

changes such that only the parameters of good outputs, ∑
=

M

m 1

βm=1. To

estimate the parameters of the sub-vector input distance function the
objective function is modified such that it becomes minimization problem
rather than maximization problem and the constraints in (ii) changes

such that only the parameters of bad outputs, ∑
=

J

j 1

γj=1. In this sub-

vector input distance function the firms contract the bad outputs for the
given level of good outputs and inputs, and the value of distance function
is greater than one or equal to one.

Data Envelopment Analysis (DEA)

The DEA involves the use of linear programming methods to
construct a piecewise linear envelopment frontier over the data points
such that all observed points lie on or below the frontier. In computing
the distance functions, we choose the data envelopment analysis (DEA)
(or activity analysis) methodology among competing alternatives, so as
to take advantage of the fact that the distance functions are reciprocals
of Farrell efficiency measures. Thus, the technical efficiency for each firm
is computed like this
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In computing environmental efficiency, we chose the firm that is
producing the optimal mix of good and bad output as our reference, i.e.,
point B in the figure 1. We let Kk ,....,1= index the observations (firms)

in the sample. Thus for each observation Kk ,......,1' = , we may
compute the distance function for each firm
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which is the numerator for ),,,( 00 lk
y yybxQ . The denominator is

computed by replacing 
'ky on the right hand side of the good output

constraint with the observed output for the reference firm, i.e., 0y . This
problem, using the observed data on desirable outputs, undesirable
outputs and inputs between firms, constructs the best practice frontier for
a particular firm, and computes the scaling factor on good outputs
required for each observation to attain best practice. For the bad index,
for a particular firm, for each observation Kk ,......,1' = we compute
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which is the numerator for )l,bk,b,y(xbQ 00 . The denominator is

computed by replacing 
'kb on the right hand side of the bad output

constraint with the observed bad outputs for the reference firm, i.e., 0b .
As above, this problem constructs the best practice frontier from the
observed data and computes the scaling factor on bad outputs required
for each observation to attain best practice.2

IV. Data

We are interested in the measurements of technical and
environmental efficiency, whose product constitute the resource use
efficiency, we restricted our attention to electric generating plants for
which each generating unit had a minimum installed nameplate
generating capacity of 25 megawatts.3 We exclude from our sample
plants, which have missing data or reporting errors in a specific year.
The deterministic linear programming is sensitive to outliers, to minimize
the effects of outliers; we first examined the ratios of each of output to
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each input and compared their descriptive statistics across periods. If we
observed any abnormality for any plant for a specific year, we excluded
that plant from our data set. Thus our balanced panel data consist of 80
electric generating plants for the years 1995-2001. Out of these 80
plants, 26 plants (including 'compensation and substitution' units) are the
plants that could emit at the rate of 2.5 pounds of SO2 per million BTUs
of heat input during the phase I.

The process of fossil-fueled electricity generation typically uses
three conventional inputs; namely, fuel, labor and capital to produce
electricity and emissions. The data come primarily from two government
agencies- the Federal Energy Regulatory Commission (FERC) and the
US Environmental Protection Agency (EPA). These agencies have over
the years provided the public with access to data concerning regulated
utilities and pollution. The FREC maintains an online database of FERC
Form 1 for the years 1994 to the present. The Form 1 provides annual
information of electricity production activities at the plant level. The EPA
maintains emissions database for all majors US pollution sources. Its
Aerometric Information Retrieval System (AIRS) database is the source
of air pollution data of SO2, NOx and CO2 for the years 1995 to the
present. The 1990 CAAA required all affected power plants to install
continuous emission monitoring system (CEMS) by 1995. Consequently,
all air pollution data from 1995 on are CEMS stack readings.

In summary, our data set consists of a balanced panel of 80
steam electric utility plants operating during 1995-2001. Variables in the
data set include net generation of electricity, emissions of SO2, NOx,
CO2, fuel input, labor and capital. We employ total net generation in
million kilowatt-hours (kWh), fuel in 1012 British thermal units (BTUs) of
heat content to neutralize the heterogeneous nature of coal as well as to
allow for different type of fuel inputs. Labour is measured as the annual
average number of employees. Capital is measured in 1996 million
dollars. We use this measure of capital rather than the installed
nameplate capacity because we are interested not only in the generating
capacity of a plant, but also the extent to which the plants have invested
in equipment to reduce emissions of air pollutants. The descriptive
statistics is provided in Table 1.
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V. Results

Nine different sets of distance functions results are presented
here. These are the multi-outputs (good and bad) output distance
function, good outputs output distance function, and the bad outputs
input distance function. Each is estimated using maximum likelihood
estimator (MLE), parametric linear programming (PLP) and Data
Envelopment Analysis (DEA).

Stochastic Frontier Results

We estimated the transformed distance functions by the
maximum likelihood using the FRONTIER package developed by Coelli
(1994). The parameter estimates and ‘t’ statistics are presented in Table
2. We started with the full translog specification and tested whether some
parameters could be deleted. The full translog distance functions were
tested to be the most appropriate specification; see Table 3. The
hypothesis of the absence of inefficiency is rejected for each model.
Most of the parameters of the selected functional forms appeared to be
significant (at the 95% significance level). In the estimation process we
have assumed the more general truncated normal distribution of the
systematic error term as in our models the value of µ  appeared to be
significant either at 90 percent or 95 percent level of significance. To
judge the convexity-concavity property of the models we tested for every
observation whether the principal minors of the Hessian matrix are
positive or negative and we may conclude that the estimated models
appeared to be the most appropriate models in this respect.

We now turn to the estimated results of technical, environmental
and resource use efficiency measures. The seven-year average
estimates of output-oriented technical efficiency seem reasonable,
ranging from 0.747 to 0.964 with a mean of 0.908. Because of the dual
relationship between the revenue function and the distance function, this
result can be interpreted as an increase of the revenue at the average by
9 percent due to attaining the efficiency frontier. To calculate the
environmental efficiency scores, we estimated the two sets of distance
functions, one where the maximum expansion in good output for the
given level of bad outputs and conventional inputs. The other is the
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maximum contraction in the bad outputs for the given level of good
output and conventional inputs. Environmental efficiency is smaller, on
average, than output-oriented technical efficiency, with a range from
0.052 to 0.747 and a mean of 0.517. Recall that the technical efficiency
measure focuses on the utilization of the conventional resources and the
environmental efficiency measure relates the observed output mix to the
optimal output mix. Multiplication of technical and environmental
efficiency results in resource use efficiency. The resource use efficiency
is by definition smaller than the technical and environmental efficiency
measures, ranging from 0.045 to 0.676 and a mean of 0.470. The yearly
geometric means of all the three measures are presented in Table 4. We
observe that the yearly average of technical efficiency of the plants first
increases up to 1997 and declines in 1998 and then it again starts to
increase. But with respect to environmental and resource use efficiency
we are not observing any trend in the respective series.

The Spearman rank correlation between the distinguished
measures of performance is presented in Table 5. The rank correlation
coefficient between the technical efficiency and the environmental
efficiency scores is small and negative. Technical efficiency and
environmental efficiency are positively correlated to the resource use
efficiency measure, due to the definition of resource use efficiency.
Nonetheless, large differences in the raking according to the technical,
environmental and resource use efficiency measures exist. Like that the
rank correlation coefficient between technical efficiency and resource
use efficiency is very small (0.006). A firm that is judged efficient
according to standard technical measures might not be environmentally
efficient. But the high rank correlation coefficient between environmental
efficiency and resource use efficiency (0.968) shows that if a plant is
environmentally efficient, it might be efficient in the use of all kind of
resources, i.e. environmental as well as conventional inputs.

Parametric Linear Programming and DEA Results

The stochastic estimation has the advantage of hypothesis
testing but in the deterministic approach we can impose the theoretical
restrictions of regularities on the models to be estimated. In the
parametric linear programming estimation we have estimated the
distance function for each year separately for the full translog models
since in the stochastic estimation full translog model appeared to be the
most appropriate model. The estimated parameters of the linear
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programming models are almost similar to the stochastic models (which
can be had from the authors on request). We observe that in both the
models (MLE and PLP) the firms are not observing constant returns to
scale. Therefore in the computation of distance function values in DEA
we have put the restriction that the firms are not operating under the
condition of constant returns to scale, i.e. we are assuming variable
returns to scale.

In Table 4 we have presented the yearly averages of the various
measures of efficiency computed through these different estimation
techniques and rank correlation coefficients between the various sets of
efficiency predictions are presented in Table 5. Looking firstly at the
means of technical efficiency (Table 4) we observe that among the three
orientations the MLE produces the largest mean efficiencies in
comparison to PLP and DEA and these differences are generally not
small. But the seven years mean of the sample for environmental
efficiency score is highest for the PLP and smallest for the DEA
approach. The differences are generally quite large between parametric
measures and non-parametric measure.

The rank correlation matrixes between various measures of
performance can judge the compatibility between technical and
environmental efficiency. We judge from Table 5 the consistency
between the measures of technical efficiency and environmental
efficiency. The rank correlation coefficient between these measures
under PLP and DEA is -0.014 and 0.173 respectively. This again, like
stochastic measure, reveals that a firm that is technically efficient might
not be efficient environmentally. The rank correlation coefficients
between technical efficiency and resource use efficiency for both of the
deterministic measures are 0.552 and 0.557. We find a high rank
correlation between environmental efficiency and resource use efficiency
measures; i.e. 0.761 and 0.897 for parametric linear programming and
DEA measures respectively.

A Combination of Efficiency Measures

Having discussed the various sets of results, one task, which
remains so far is to identify a set of preferred results for the purpose of
discussing the relative resource use performance of the electricity
generating plants of US during the SO2 trading regime. We are not taking
the side of the proponents of parametric or not parametric, stochastic or
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deterministic estimation camps. We are constructing geometric means of
the three computation techniques for each data point for all the three
measures. The yearly geometric means of the MLE, PLP and DEA
efficiency measures are tabulated in Table 4 for each of the three
measures, i.e. technical efficiency, environmental efficiency and resource
use efficiency.

The estimates of the overall geometric mean of technical
efficiency ranges between 0.331 to 0.922 and with a mean of 0.737. This
implies that an increase in revenue of 26 percent is possible due to
attaining the efficiency frontier. The geometric mean of environmental
efficiency, on average, is smaller than the geometric mean of output-
oriented technical efficiency, with a range from 0.127 to 0.539 and with a
mean of 0.335. The figures for resource use efficiency ranges from 0.042
to 0.436 with a mean of 0.248. For the combined figures also, the rank
correlation coefficient between technical efficiency and environmental
efficiency is although positive but small (0.213). The rank correlation
coefficients between technical efficiency and resource use efficiency,
and between environmental efficiency and resource use efficiency are
quite large, i.e. 0.617 and 0.877 respectively. This reveals that if a firm is
environmentally efficient, it might be efficient in utilization of all kind of
inputs.

One other issue of concern is to determine the factors underlying
the changes in the various measures of efficiency. We expect that
specific attributes of an individual plant contribute to the economic and
environmental performance.  Therefore, to further aid an understanding
of the results discussed above and to test the hypothesis whether trading
of the SO2 emissions has affected the various measures of efficiency, we
estimated regressions on a panel data set. The regression analysis also
helps to test whether environmental performance is related to various
measures of efficiency. Tobit regression is often used with censored data
and is suitable for analysis of efficiency scores as these are bounded
between 0 and 1. The use of Tobit regression for fixed effect model
creates further complications. For a sample with a finite number of years,
the Tobit model cannot consistently estimate the fixed effects and further
more this inconsistency is transmitted to the estimates of coefficients and
the variance of error term.4 Hence heteroskedasticity corrected OLS is a
generally accepted estimation procedure in this setting. The first
regression had the technical efficiency scores, the second equation
environmental efficiency scores and the third equation resource use
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efficiency scores as dependent variables. To examine the relationship
between different measures of efficiency and their determinants, we
included the dummy variable for phase I plants (TRADE), size of the
plant measured in megawatts by the nameplate capacity of the plant
(SIZE), environmental performance of the plant measured by the ratio of
SO2 emissions in pounds per million BTUs of heat consumption
(SO2/HEAT), and time trend (TIME).

Table 6 provides the parameter estimates of the regressions for
the efficiency indexes under alternative specifications. For every index,
the first column report the estimation results for the period 1995-1999
(model 1) and the last column are the parameter estimates of models for
the period 1995-2001 (model 2). Model 1 covers the phase I of the SO2
trading program, therefore in this model the firms that participated in
trading are differentiated by the introduction of dummy variable (TRADE).
The phase II of the trading program started in January 2000 and all the
electricity plants had to necessarily participate in the trading therefore
model 2 covers the period 1995 to 2001. These two models were
introduced only to judge the robustness of the results.  The regression
results show that three efficiency indexes are significantly affected by
most of the independent variables in both of the situations. The
significance of F statistics at the 1- percent critical level shows the
goodness of fit for all of the models. We find that the SIZE variable
affects the efficiency index positively, it indicates that the plants that have
bigger generation capacities are more efficient not only in terms of
technical efficiency but also in terms of environmental and resource use
efficiency. The positive association between the TIME variables and
indexes of efficiency indicates that over time all the measures of
efficiency are witnessing an upward trend.

The signs of TRADE and SO2/HEAT variables are of particular
interest and require some discussion. We find that the TRADE variable is
significant at 5 percent and 10 percent critical levels in determining the
technical efficiency index and resource use efficiency index and to both
indexes it is negatively related. But this variable is statistically significant
in determining the index of environmental efficiency at 10 percent critical
level in model 1 and its parameter is statistically insignificant in model 2.
There is no expected relationship between the different measures of
efficiency and whether a plant could participate in trading of emissions.
But as Burtraw (1996) pointed out, there are two aspects of efficiency
worth considering. One, allocative efficiency which is equivalent to our
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measure of environmental efficiency requires that the goal of the policy is
indeed the best use of society's resources. The second aspect is cost-
effectiveness. To explain the negative relationship between resource use
efficiency and the dummy variable of phase I units, two points should be
noted. One, phase I of the SO2 allowance program extracts emissions
reductions from the 110 dirtiest power plants in the U.S. These might be
the plants those had older production technology and were not able to
meet the new performance standards their own, as a result the resource
use efficiency of these plants were lower in comparison to their
counterparts who were facing the performance standards. Second, cost
effectiveness requires that under the allowance program the variance of
emission rate to diverge over time, if plants differ in their ability to
accommodate emissions reductions it is expected that the variance of
emission rates to rise as owners take advantage of opportunities to trade
allowances. From 1994 to 1999 for phase I units, the average and
standard deviation of emission rate of our sample plants fell steadily (if
1995 is ignored) (Table 7). This would be expected under a command
and control regime. Thus the findings presented here concur with
Swinton (2004) in suggesting that market for allowances, per se, may not
be minimizing compliance cost.

Now, it is the turn to explain the relationship between various
measures of efficiency and SO2 emission rate of the plants. We find that
technical efficiency, which measures the radial expansion in the output
vector (good as well as bad outputs) for the given level of inputs, is
positively associated with the emission rate. The relationship between
the environmental efficiency, which measures the relative optimal mix of
good to bad outputs, and emission rate, is negative implying that as the
emission rate declines the environmental efficiency of a plant increases.
Thus we find a tradeoff in the sense that the decrease in emission rates
leads to decrease in technical efficiency but increase in environmental
efficiency, that is to decrease emission rates the producers of electricity
have to incur abatement costs and these costs leads to improvement in
environmental quality. This trade-off raises the question, what is the net
impact of decrease in emission rate on the society's resources
(environmental as well as conventional resources). The relationship
between resource use efficiency and emission rates may help to answer
this question. We find a negative relationship between resource use
efficiency and emission rates in both of the models. In model 1 that have
observations for the period 1995-1999, the relationship is statistically
insignificant, but in model 2 as the observations increases, that is for the
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period 1995-2001, the relationship is statistically significant at 10 percent
critical level. This implies that decrease in emission rates not only
increases environmental efficiency but also leads to increase in resource
use efficiency. This finding concur with the hypothesis that enhancement
in environmental performance of a firm leads to increase in the resource
use productivity of the firm (Porter and van der Linde, 1995).

VI. Conclusions

The aim of this paper is to measure resource use efficiency of
US Electricity Generating Plants during the SO2 trading regime.
Resource use efficiency is defined as a product of technical efficiency
and environmental efficiency. Environmental efficiency is defined as the
ratio of good to bad outputs in comparison to the best practicing firm, i.e.
the firm that is producing the optimal mix of good and bad outputs and
thus it is similar to the concept of output oriented allocative efficiency.
This resource use efficiency measure enables the identification of plants
that are characterized by efficient use of conventional resources
(technical efficiency) and efficient use of natural resources
(environmental efficiency).

The distance functions are used as analytical tools to obtain the
objective of the paper. We use three methods for the calculation of
efficiency; namely Stochastic Frontier Analysis (SFA), deterministic
parametric and non-parametric linear programming. The econometric
approach is stochastic, and so attempts to distinguish the effects of noise
from the effects of inefficiency. Mathematical programming (parametric
or non-parametric) approach is non-stochastic and lump noise and
inefficiency together, calling the combination inefficiency. The
econometric and parametric mathematical programming approach is
parametric, and confounds the effects of misspecification of functional
form (of both technology and inefficiency) with inefficiency. The
econometric approach allows for a formal statistical testing of
hypotheses. The DEA approach is non-parametric and less prone to this
type of specification error. In DEA the number of outlier firms tends to
increase as variables are added to the model. This results in loss of
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information, in particular when the sample size is small. Therefore, in the
present study an averaging approach is adopted since in many situations
a simple average of forecasts will achieve a substantial reduction in
variance and bias through averaging out individual bias.

For the combined figures, the estimate of the overall geometric
mean of technical efficiency ranges between 0.331 to 0.922 and with a
mean of 0.737. This implies that an increase in revenue of 26 percent is
possible due to attaining the efficiency frontier. The estimates of the
overall geometric mean of environmental efficiency and resource use
efficiency are 0.335 and 0.248 respectively. The rank correlation
coefficient between technical efficiency, environmental efficiency and
resource use efficiency is 0.213, 0.617 and 0.877 respectively. This
reveals that if a firm is environmentally efficient, it might be efficient in
utilization of all kind of inputs. We find that the plants larger in size are
more efficient and these efficiency measures are increasing overtime.
Moreover, in the regression analyses we observe that phase I units are
negatively related to these measures of performance. This suggests that
market for allowances, per se, may not be minimising compliance cost.
We also find that decrease in SO2 emission rates not only increases
environmental efficiency but also leads to increase in resource use
efficiency. This finding concur with the hypothesis that enhancement in
environmental performance of a firm leads to increase in the resource
use productivity of the firm.

The resource use efficiency measurement and analysis provide
the following lessons for Indian Environmental Policy. (1) Decrease in
environmental pollution intensity leads not only improvements in
environmental efficiency, but also increase the resource use efficiency.
(2) It is not the application of MBIs per se that leads to cost-
effectiveness, but it is the flexibility provided in meeting environmental
standard that improves the resource utilization in the economy either it is
provided through the introduction of MBIs or performance based
standards.
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                         Table 1: Descriptive Statistics of the Variables used in the Study

Electricity
(106 kWh)

SO2 (tons) NOx
(tons)

CO2 (tons) Labor Capital
(million $)

Heat
(1012

BTU)
Mean 3372.709 28342.86 11412.36 4679370. 139.982 237.506 46255983

Median 2308.950 13835.00 7962.750 3475411. 109.500 162.491 35133444

Maximum 26631.20 183797.0 71470.00 23868011 746.000 3218.244 2.33E+08

Minimum 0.310 11.600 27.600 9721.300 29.000 16.860 95078.00

Std. Dev. 3338.674 35115.30 11206.25 4457019. 106.295 292.648 42926297

Observations 560 560 560 560 560 560 560
``
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          Table 2:  Maximum Likelihood Estimates of Stochastic Frontier Distance Functions
                                                            (Full Translog Models)

Variable/
Parameter ),,( '0 ' kk

y byxD ),,( 00 '

byxD k
y ),,(

'00 k
b byxD

β0 (Intercept) 9.19 (7.20)* 18.50 (18.30) * 2.89 (2.06) **
β1 (Y1) 0.334 (2.28) ** -2.45 (-2.77) * 0.312 (1.74) ***
β2 (Y2) -2.40 (-8.29) * 10.20 (11.50) * 0.748 (-2.08) **
β3 (Y3) 2.43 (9.04) * 1.51 (1.58) -0.159 (-0.84)
β4 (X1) -0.437 (-2.23) ** -11.30 (-14.70) * -0.136 (-0.86)
β5 (X2) -0.584 (-1.74) *** 5.31 (4.77) * -1.45 (-3.57) *
β6 (X3) 0.083 (0.353) -0.889 (-0.90) 0.399 (1.45)
β7 (Y12) 0.015 (4.79) * -0.0059 (-0.27) 0.0084 (2.20) **
β8 (Y22) 0.351 (24.42) * -0.263 (-2.19) ** 0.264 (14.30) *
β9 (Y32) 0.167 (8.83) * 0.127 (1.29) -0.0032 (-1.30)
β10 (Y1*Y2) -0.07 (-4.99) * 0.154 (0.83) -0.072 (-5.63) *
β11 (Y1*Y3) 0.048 (3.73) * -0.003 (-0.48) -0.014 (-2.68) *
β12 (Y2*Y3) -0.507 (-1.91) *** -0.14 (-0.75) 0.028 (1.40)
β13 (X12) 0.016 (1.63) *** 0.479 (3.77) * 0.008 (1.43)
β14 (X22) 0.033 (1.19) 0.129 (0.97) 0.042 (1.25)
β15 (X32) -0.013 (-1.52) 0.067 (-1.36) -0.004 (-0.35)
β16 (X1*X2) -0.077 (-3.57) * 0.131 (0.33) -0.052 (-1.95) ***
β17 (X1*X3) 0.003 (0.13) -0.41 (-1.32) 0.020 (0.93)
β18 (X2*X3) 0.022 (0.78) 0.016 (0.13) -0.036 (-1.04)
β19 (Y1*X1) 0.0016 (0.18) 0.037 (0.20) 0.009 (0.85)
β20 (Y1*X2) -0.019 (-1.09) 0.076 (0.93) -0.009 (-0.42)
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Variable/
Parameter ),,( '0 ' kk

y byxD ),,( 00 '

byxD k
y ),,(

'00 k
b byxD

β21 (Y1*X3) 0.022 (1.55) -0.077 (-1.12) 0.023 (1.26)
β22 (Y2*X1) -0.144 (-4.89) * -0.17 (-0.82) -0.159 (-6.04) *
β23 (Y2*X2) 0.229 (6.16) * -0.64 (-1.31) 0.313 (7.15) *
β24 (Y2*X3) -0.019 (-0.75) 0.597 (1.75) *** -0.072 (-2.57) **
β25 (Y3*X1) 0.089 (4.10) * -0.096 (-0.63) -0.002 (-0.16)
β26 (Y3*X2) -0.137 (-3.50) * 0.0057 (0.03) 0.0028 (1.43)
β27 (Y3*X3) -0.033 (-1.34) 0.071 (0.559) -0.013 (-0.75)

22
uv σσ + 0.095 (8.71) * 4.98 (12.70) *

0.093 (6.28) *
)( 222

uvu σσσγ += 0.91 (71.40) * 0.976 (246.0) *
0.793 (14.50) *

µ -0.586 (-9.99) * -4.41 (-11.40) * -0.543 (-6.45) *
Log Likelihood Fn. 314.46 -599.48 206.96

Note: Values in parentheses are the ‘t statistics’. *, **, and *** show the level of significance at 1%, 5%

and 10 % respectively. In model ),,( '0 ' kk
y byxD , Y1, Y2, Y3, X1, X2, X3 are respectively the SO2/

Electricity, CO2/Electricity, NOx/Electricity, Labor, Capital and Heat respectively. In model

),,( 00 '

byxD k
y  Y1, Y2, Y3, X1, X2, X3 are respectively the SO2, CO2, NOx, Labour, Capital and

Heat respectively. In model ),,(
'00 k

b byxD  Y1, Y2, Y3, X1, X2, X3 are respectively the Electricity,
CO2/ NOx , SO2/ NOx, Labour, Capital and Heat respectively.
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Table 3: Specification Tests for Alternative Stochastic
Distance Function Models

Model Null Hypothesis Likelihood
Ratio (λ)

2χ Criti
cal

Value
(95%)

Decision

),,( '0 ' kk
y byxD

Cobb-Douglas

0
,0,0

27

87

=−−
==

β
ββ 557.68 32.7 Rejected

Restricted
Translog

0
,0,0

27

1413

=−−
==

β
ββ 99.14 25.0 Rejected

),,( 00 '

byxD k
y

Cobb-Douglas

0
,0,0

27

87

=−−
==

β
ββ 61.4 32.7 Rejected

Restricted
Translog

0
,0,0

27

1413

=−−
==

β
ββ 31.48 25.0 Rejected

),,(
'00 k

b byxD

Cobb-Douglas

0
,0,0

27

87

=−−
==

β
ββ 105.72 32.7 Rejected

Restricted
Translog

0
,0,0

27

1413

=−−
==

β
ββ 55.82 25.0 Rejected

λ= -2[Log likelihood (H0)-Log likelihood (H1)]
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Table 4: Yearly Geometric Mean of Various Measures of Efficiency
Stochastic

Year Technical
Efficiency

Environmental
Efficiency

Resource Use
Efficiency

1995 0.872 0.486 0.424
1996 0.902 0.511 0.461
1997 0.917 0.467 0.428
1998 0.908 0.301 0.273
1999 0.913 0.525 0.479
2000 0.917 0.591 0.542
2001 0.922 0.496 0.457

Parametric Linear Programming
1995 0.583 0.448 0.261
1996 0.673 0.520 0.350
1997 0.646 0.553 0.357
1998 0.510 0.468 0.239
1999 0.712 0.584 0.416
2000 0.760 0.616 0.468
2001 0.706 0.594 0.420

DEA
1995 0.620 0.124 0.077
1996 0.634 0.383 0.081
1997 0.636 0.122 0.078
1998 0.692 0.165 0.114
1999 0.652 0.130 0.085
2000 0.649 0.143 0.093
2001 0.629 0.137 0.086

Combined
1995 0.681 0.300 0.204
1996 0.727 0.323 0.235
1997 0.722 0.316 0.228
1998 0.684 0.285 0.195
1999 0.751 0.342 0.257
2000 0.768 0.374 0.287
2001 0.743 0.343 0.255
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   Figure 2. Decomposition of Resource use Efficiency.
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Table 5: Spearman Rank Correlation-Matrix of Various
 Measures of Efficiency

Stochastic
Technical
Efficiency

Environmental
Efficiency

Resource
Use Efficiency

Technical Efficiency 1.000 -0.177 0.006
Environmental Efficiency -0.177 1.000 0.968
Resource Use Efficiency 0.006 0.968 1.000

Parametric Linear Programming
Technical Efficiency 1.000 -0.014 0.552
Environmental Efficiency -0.014 1.000 0.761
Resource Use Efficiency 0.552 0.761 1.000

DEA
Technical Efficiency 1.000 0.173 0.557
Environmental Efficiency 0.173 1.000 0.897
Resource Use Efficiency 0.577 0.897 1.000

Combined
Technical Efficiency 1.000 0.213 0.617
Environmental Efficiency 0.213 1.000 0.877
Resource Use Efficiency 0.617 0.877 1.000
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                      Table 6: Regression Analysis of Various Measures of Efficiency

Technical Efficiency Environmental Efficiency Resource Use Efficiency
Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

Constant 0.608
(26.38)*

0.597
(34.33)*

0.328
(16.24)*

0.317
(20.03)*

0.196
(10.90)*

0.185
(13.14)*

TRADE -3.78E-01
(-2.35)**

-2.78E-01
(-2.03)**

-2.27E-01
(-1.70)***

-1.03E-01
(-0.88)

-3.20E-01
(-2.63)*

-1.91E-01
(-1.74)***

SIZE 5.30E-04
(3.19)*

5.48E-04
(4.34)*

8.96E-04
(6.83)*

8.95E-04
(8.47)*

9.53E-04
(7.09)*

9.52E-04
(8.68)*

SO2/HEAT 4.33E-01
(8.54)*

4.29E-01
(9.79)*

-2.76E-01
(-5.22)*

-3.01E-01
(-6.33)*

-5.51E-02
(-1.20)

-7.94E-02
(-1.94)**

TIME 1.15E-01
(2.54)**

1.51E-01
(4.72)*

1.55E-02
(0.71)

6.38E-02
(2.32)**

5.40E-02
(1.43)

1.02E-01
(4.05)*

R2 0.165) 0.181 0.212 0.225 0.193 0.208
F 19.55 30.76 26.57 40.20 23.58 36.41
Note :  Values in parentheses are the ‘t statistics’. *, **, and *** show the level of significance at
1%, 5% and 10 % respectively.
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Table 7: Mean Emission Rates (standard deviation)

Year Phase-I Plants All Plants
1995 1.94 (1.54) 1.65 (1.45)

1996 2.13 (1.73) 1.55 (1.35)

1997 2.04 (1.61) 1.53 (1.28)

1998 1.88 (1.50) 1.49 (1.28)

1999 1.82 (1.38) 1.40 (1.08)
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End Notes

1 See Fare et al. (2000) for a reference.

2 Note that this index measures the environmental efficiency of each firm relative
to the reference firm. Therefore, one can assume the same technology for all the
firms and let Kk ,....,1= index the firms in the sample.  Then, for an arbitrarily
chosen base firm, for example l, the resultant efficiency scores will provide a
cross firm comparison. Fare, Grosskopf, and Hernandez-Sancho (2000) use this
approach in their application.

3 Since only the units whose generating nameplate capacity is greater than 25
megawatts are covered under the Allowance program.

4 For a comprehensive discussion on limited dependent variables and panel data
see Baltagi (1995), pp. 178-187.


